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Abstract

Based on numerical solutions of the balance equations accurate empirical correlations for filmwise condensation in forced convection
flow over a horizontal flat plate are presented. The correlations are designed to be also correct for the limiting case of zero and infinite
condensation rate. They are applied to determine the interface temperature between liquid and vapour phase and hence the condensation
rate and heat flux. The results are in excellent agreement with those from numerical solutions of the balance equations. It turns out that
the usually adopted film theory for the vapour-phase mass transfer overestimates the size of a heat exchanger.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Film condensation of mixed vapours, particularly of
binary mixtures, has been the subject of a great number
of publications in the last two or three decades. Fundamen-
tal studies were first made by Sparrow and Lin [1], Minko-
wycz and Sparrow [2] and Sparrow et al. [3]. They explored
analytically the condensation of gases containing non-con-
densables in forced convection flow along a horizontal flat
plate. Following their studies a very large number of pub-
lications have been devoted to condensation of gas mix-
tures in laminar or turbulent flow along horizontal,
vertical or inclined plates, inside or outside tubes and in
tube bundles. An overview can be found in a paper of
Lucas [4] or in the text-books and hand-books, e.g. in
[5,6]. In many of these studies numerical solutions of the
governing equations for energy and mass have been pre-
sented for a wide variety of circumstances.

The driving force for heat transfer in the liquid film is
the difference between interface temperature Ti and wall
temperature Tw. As the wall temperature Tw often is
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known or can be expressed with the aid of the heat transfer
rate between wall and cooling liquid, the main remaining
task is the determination of the interface temperature Ti.
It cannot be found easily from a solution of the balance
equations, because this requires several tedious iteration
procedures. To avoid them heat exchanger design hand-
books [5–7] recommend the film theory as an approximate
method, though it is known that mass fluxes predicted with
the film theory for convective flow with suction, as is the
case for condensing vapour, are too low and approach
exact values only for vanishing suction [8].

The present work provides correlations for the problem
of condensing binary mixtures to determine the interface
temperature in forced convective flow along a horizontal
flat plate. The correlations were derived from exact numer-
ical solutions of the balance equations. The results
obtained with these correlations are in excellent agreement
with those from the numerical solutions, but avoid the
many iteration procedures of numerical solutions of the
balance equations. An example demonstrates the applica-
tion. As can be shown the usually adopted film theory
underestimates the condensation rate and thus leads to
oversized condensers.
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Nomenclature

cpL specific heat of condensate, J kg�1 K�1

cF friction factor, cF = sd/b(qGu1)2/2c
D binary diffusion coefficient, m2 s�1

F0 suction parameter, Eqs. (2) and (5)
Dhv condensation enthalpy, J kg�1

_m interfacial mass flux, kg m�2 s�1

T temperature, K
t temperature, �C
u1 free-stream velocity, m s�1

x liquid mass fraction
x co-ordinate in flow direction, m
~x liquid molar fraction
y gas mass fraction
~y gas molar fraction
Y mass fraction ratio, Y = (yi � y1)/(yi � xi)
z co-ordinate perpendicular to wall, m

Greek symbols
a heat transfer coefficient, W m�2 K�1

b mass transfer coefficient, m s�1

dL liquid film thickness, m
gd dimensionless film thickness, Eq. (3)
k thermal conductivity, W m�1 K�1

m kinematic viscosity, m2 s�1

q density, kg m�3

Dimensionless numbers

E dimensionless driving temperature difference,
E = cpL(Ti � Tw)/(PrLDhv)

Nu Nusselt number, Nu = ax/k
Re Reynolds number, Re = u1x/m
R property parameter, R = (qL/qG)(mL/mG)

1/2

Pr Prandtl number, Pr = mqcp/k
Sc Schmidt number, Sc = m/D
Sh Sherwood number, Sh = bx/D

Subscripts

c coolant
i interface
G gas
L liquid
o vanishing suction
1 in free stream
ref reference
x with x as length in dimensionless quantity
w wall
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2. The interface temperature

We consider the laminar condensation of a binary
vapour mixture, as shown in Fig. 1. The vapour is assumed
to be saturated with a free-stream equilibrium composition
y1 of the low boiling component. Its free-stream tempera-
ture is T1 and the free-stream velocity u1. At the interface
between vapour and liquid film the two phases have equi-
librium composition yi in the vapour and xi in the liquid
phase. The temperature Ti then follows from an energy bal-
ance at the interface [9]

_q ¼ kL
dL

ðT i � T wÞ ¼ aGðT1 � T iÞ þ qGbGY Dhv ð1Þ

with Y = (yi � y1)/(yi � xi) when both components are
condensable.
z

x

Wall

Condensate

Vapour yu T

TW

Interphase Ti, y i in Vapour,

x i in Condensate

∞ ∞ ∞

Fig. 1. Physical model.
We have 0 6 Y 6 1 with Y = 0 when no condensation
occurs and Y = 1, namely xi = y1, for total condensation.
If the low boiling component is incondensable, for example
in a steam–air mixture, we have xi = 0, and Y reduces to
Y = (yi � y1)/yi. The condensation rate in Eq. (1) is
� _m ¼ qGbGY .

The negative sign herein indicates that the mass flow is
directed in the negative direction of the co-ordinate z in
Fig. 1.

In Eq. (1) the film thickness dL, the heat transfer coeffi-
cient aG on the vapour side of the interface and the corre-
sponding mass transfer coefficient bG are all complicated
functions of the interface temperature Ti, because these
coefficients depend on the driving temperature difference
Tw � Ti, and the thermophysical properties depend on Tw

and Ti, as well.
At present dL, aG and bG must be determined from

numerical solutions of the balance equations for mass
and energy. These are non-linear differential equations
and can only be solved numerically. In order to solve them
an iterative procedure is imperative: If the wall temperature
Tw and the streamline temperature T1 are given we need to
estimate the interface temperature Ti, and in addition the
so-called suction parameter defined as

F 0 ¼
� _m
qGu1

2Re1=2Gx . ð2Þ

Both, F0 and Ti, should fit together to fulfill Eq. (1). Other-
wise the balance equations must be solved repeatedly until
both parameters fit together. This laborious procedure can
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be avoided with the aid of approximate correlations for dL,
aG and bG of sufficient high accuracy as presented in the
following.

3. Correlations for heat and mass transfer

The film thickness dL in Eq. (1) was first calculated by
Emmons and Leigh [10]. They numerically solved the bal-
ance equations and tabulated the results, which are indeed
very accurate. We extended their tables to a greater number
of values F0 solving again numerically the balance equa-
tions. The results could be correlated by

NuLxRe
�1=2
Lx ¼ 1

gd
¼ 0:332� 0:08ðREÞ0:443

1:745ðREÞ2=3 þ 0:992ðREÞ1:66
þ 0:25

 !1=2

ð3Þ
with NuLx ¼ aLx

kL
¼ x

dL
, R ¼ qL

qG

mL
mG

� �1=2
, E ¼ cpL T i�Twð Þ

PrL Dhv
, and

gd ¼ dL
x Re

1=2
Lx .

The dimensionless parameters R, E, gd herein were first
introduced by Minkowycz and Sparrow [2].

The maximum error in NuLx is 0.27% over the entire
range 0 6 RE 61. As can be seen from Eq. (3) the film
thickness in forced convection condensation increases with
length according to dL � x1/2.

The conduction term aG(TG � Ti) in Eq. (1) is often
much smaller than the condensation term qGbY Dhv ¼
� _mDhv, except for small condensation rates Y ! 0. Most
often this term therefore can be neglected. In the following
we do so. How to proceed when heat conduction may not
be neglected is explained in the appendix of the paper.

A correlation for mass transfer was dealt with by Rose
[11]. It can be written in the form

ShGxRe
�1=2
Gx ¼ u1ðScÞ

1

1þ 0:427F 1:14
0 Sc0:93

þ F 0Sc
2

. ð4Þ

Herein the suction parameter F0(RE) is given by

F 0 ¼ 2RE=gd ð5Þ
with gd(RE) from Eq. (3).

Eq. (4) is valid in the entire range of the suction param-
eter 0 6 F0 61, and also valid for 0 6 Sc 6 1.

The function u1(Sc) was approximated by

u1ðScÞ ¼
Sc1=2ffiffiffi

p
p

ð1þ 1:973Sc0:272 þ 21:29ScÞ1=6
ð6Þ

also valid over 0 6 Sc 6 1.
Eq. (6) is of higher accuracy than previous correlations

given by Rose [12] and by Baehr and Stephan [13], though
these correlation agreed already well with numerical results
obtained from the balance equations. The maximum error
in ShGx, Eq. (4), is over the entire range of RE and Sc

below 3%, and below 1% in the interesting range
0.3 6 Sc 6 1 for gases within 0.01 6 RE 6 10.

As follows from this, Eq. (4) is of the form

ShGxRe
�1=2
Gx ¼ f ðSc;REÞ. ð7Þ
The mass transfer coefficients bG is a function of Sc and
RE, and thus contains also the unknown interface temper-
ature Ti.

For vanishing suction F0 ! 0, respectively RE ! 0, Eq.
(4) reduces to

ShGxRe
�1=2
Gx ¼ u1ðScÞ ð8Þ

with ShGx = bG0x/D and u1(Sc) from Eq. (6).
From the definition of the suction parameter, Eq. (2), we

obtain the condensation rate _m after elimination of ReGx

with the aid of Eq. (8).

� _m
qGbG0

¼ 1

2

Sc
u1ðScÞ

F 0 ð9Þ

with F0(RE) from Eq. (5).

Thus the condensation rate depends on parameter RE

and the Schmidt number Sc. The temperature difference
Ti � Tw in parameter

RE ¼ qL

qG

ffiffiffiffiffi
mL
mG

r
cpLðT i � T wÞ

PrLDhv

is only a few Kelvin. An error in the interface temperature
therefore greatly affects parameter RE. On the other hand
the suction parameter F0(RE) in the limit of RE ! 1 be-
comes F0 = RE and tends to F0 = 0.87(RE)2/3 in the limit
RE ! 0. As a consequence the condensation rate is also
very sensitive in errors in the interface temperature.

The correlations for heat and mass transfer given here
are of sufficient high accuracy and yield very low errors
in the interface temperature, as the following example will
demonstrate.

The friction factor cF ¼ sd=ððqGu
2
1Þ=2Þ can also be

described as a function of parameter RE

cF
2
Re1=2Gx ¼ 0:332

1þ 0:427F 1:14
0

þ F 0

2
ð10Þ

with F0(RE) from Eq. (5).

4. The calculation procedure

The procedure to determine the interface temperature
from Eq. (1) is as follows:

For a given wall temperature Tw and gas composition
y1 we first estimate the interface temperature Ti and then
calculate the thermophysical properties of the liquid and
gas phase at a reference state. For the liquid Poots and
Miles [14] and Denny and Mills [15] recommended as refer-
ence state

T ref ;L ¼ T w þ 1
3
ðT i � T wÞ; xref ;L ¼ ðT ref ; pÞ;

and for the gas phase Lucas [4] recommended T ref ;G ¼
1
2
ðT i þ T1Þ and the species concentration yref,G of the satu-
rated vapour at Tref,G.

With these reference states the thermophysical proper-
ties can be determined and from them the quantities dL
and bG follow from Eqs. (3) and (4). With the compositions
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Fig. 2. Variation of interface temperature Ti with wall temperature Tw

and mole fraction ~y1 of air.
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yi,xi at the interface determined from the phase equilibrium
of the mixture, the value Y in Eq. (1) is known as well.

If the estimated interface temperature Ti was correct,
then Eq. (1) is fulfilled. Otherwise iterations become
necessary.

If instead of the wall temperature Tw the coolant tem-
perature Tc is given, we have

kL
dL

ðT i � T wÞ ¼ kðT w � T cÞ;

where k stands for the overall heat transfer coefficient be-
tween coolant and wall. The wall temperature in Eq. (1)
then is

T w ¼ ðkL=dLÞT i þ kT c

ðkL=dLÞ þ k
. ð11Þ

In the case of a constant wall temperature Tw the inter-
face temperature is also constant and independent from the
free-stream velocity u1 and the length co-ordinate, because
they cancel in Eq. (1). Different from this follows from Eqs.
(1) and (11) that the interface temperature Ti becomes a
function of free-stream velocity and length co-ordinate
when the coolant temperature Tc is prescribed, except for
the limiting case kL/dL � k.
5. An example

As an example we determine the interface temperature
of a steam–air mixture with a mole fraction ~y1 ¼ 0:05 of
air, corresponding to a mass fraction of y1 = 0.078, when
flowing along a horizontal plate of constant wall tempera-
ture Tw = 331.15 K (60 �C), a free-stream temperature of
T1 = 373.15 K (100 �C) and pressure 0.1 MPa.

As the interface temperature is between the dew point
temperature 371.33 K (98.18 �C) and the wall temperature
331.15 K, a reasonable estimate seems to be Ti = 353.15 K
(80 �C), which is almost the arithmetic mean between dew
point and wall temperature.

With the thermophysical properties of the liquid state at

T ref ;L ¼ T w þ 1
3
ðT i � T wÞ ¼ 337:82 K ð64:67 �CÞ

and those of the gas state at T ref ;G ¼ 1
2
ðT i þ T1Þ ¼

363:15 K (90 �C) and ~yref ;G ¼ 0:298 of the saturated vapour
at 363.15 K, we find RE = 0.198(Ti � Tw) = 0.198(Ti �
331.15).

With this we obtain the suction parameter F0 from Eq.
(5) as a function of the interface temperature, and the film
thickness dL from Eq. (3). Together with the Schmidt num-
ber Sc ffi 0.55 of the steam–air mixture we obtain the mass
transfer coefficient bG from Eq. (4) as a function of RE. In
a first calculation we neglected the conduction term
aG(T1 � Ti) in Eq. (1).

Calculation of the interface temperature performed with
a personal computer delivers an interface temperature
Ti = 350.96 K (77.81 �C) in very good agreement with the
exact value from a numerical solution of the balance equa-
tions Ti = 350.93 K (77.78 �C). Both interface tempera-
tures are almost the same as the estimated value of 80 �C.
With the exact value Ti = 350.93 K of the interface temper-
ature we obtain from Eq. (9) a condensation rate of
� _m=qGbG0 ¼ 3:73. If the conduction term in Eq. (1) is
taken into account we obtain a slightly higher interface
temperature Ti = 351.65 K (78.50 �C) as follows from the
equations given in the appendix.

Fig. 2 shows the interface temperature plotted over the
wall temperature for different mole fractions ~y1 of the
air, a total pressure of 0.1 MPa and a constant Schmidt
number Sc = 0.55. The interface temperature increases
with wall temperature and decreases with the air content.
At an air content of ~y1 ¼ 0:5 the interface temperature is
only slightly higher than the wall temperature. The heat
flux tends to zero.

6. Comparison with results from the film theory

The usually adopted procedure to determine the inter-
face temperature is based on the assumption that the gas-
side heat and mass transfer may be calculated with the
aid of the film theory. In this theory we can either assume
a constant molar reference volume in the gas phase equiv-
alent to the assumption p,T = const for ideal gases, or use
a constant reference density. Because the previous equa-
tions were based on the concept of a constant reference
density, the following application of the film theory is also
based on this assumption. The mass flux towards the inter-
face is then given by

_m ¼ qGbG0 ln
y1 � xi
y i � xi

; ð12Þ

an equation equivalent to that assuming a constant molar
volume, e.g. [16].

The mass transfer coefficient bG0 without suction is
given by Eq. (8). A similar equation holds for heat transfer
without suction

NuGxRe
�1=2
Gx ¼ u2ðPrGÞ ð13Þ

with u2(PrG) equivalent to Eq. (6)
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u2ðPrGÞ ¼
Pr1=2Gffiffiffi

p
p

ð1þ 1:973Pr0:272G þ 21:29PrGÞ1=6
. ð14Þ

The heat transfer coefficient aG according to the film
theory is given by

aG ¼ aG01 with 1 ¼ /
e/ � 1

and / ¼ _mcpG
aG0

. ð15Þ

With Eqs. (8), (12) and (13) the factor / can be written

/ ¼ u1ðScÞ
Sc

PrG
u2ðPrGÞ

ln
y1 � xi
yi � xi

. ð16Þ

With this, and with Eq. (3) and qGbGY ¼ � _m, Eq. (1) con-
verts into an equation containing the unknown interface
temperature Ti:

2RE
gd

¼ F 0 ¼ 2
u1ðScÞ
Sc

ln
yi � xi
y1 � xi

þ u2ðPrGÞ
PrG

1
cpGðT1 � T iÞ

Dhv

� �
ð17Þ

with gd from Eq. (3).
If we neglect the heat conduction towards the interface

represented by the last term in Eq. (17) we obtain for
the previous example of condensation of a steam–air mix-
ture an interface temperature Ti = 343.6 K (70.5 �C)
instead of 350.96 K (77.8 �C). The condensation rate is
� _m=qGbG0 ¼ 2:29 instead of the exact value � _m=qGbG0 ¼
3:73 in the previous example. If the conductive heat flux
is taken into account the results are slightly different
Ti = 343.8 K (70.7 �C) and the condensation rate becomes
� _m=qGbG0 ¼ 2:30. Thus, the condensation rate when
determined with the film theory is too low. In this example
it is about 38% lower than the exact value. As a conse-
quence a condenser would be oversized when designed with
the film theory.

Appendix. Interface temperature when heat conduction from

gas to interface may not be neglected

The heat transfer in the gas phase is comparable to that
along a flat plate with suction, neglecting the influence of
the mass diffusion in the balance equation of the tempera-
ture field. It may be written in analogy to Eq. (4) as

NuGxRe
�1=2
Gx ¼ u2ðPrGÞ

1

1þ 0:427F 1:14
0 Pr0:93G

þ F 0PrG
2

. ðA:1Þ

In Eq. (1) we introduce the definitions

gd ¼
dL
x
Re1=2Lx ; ðA:2Þ

� _m ¼ qGbGY ¼ 1
2
qGu1Re

�1=2
Gx F 0. ðA:3Þ

With this we eliminate dL and qGbGY in Eq. (1) and after
some rearrangement obtain

1

gd
RE ¼ u2ðPrGÞ

1

1þ 0:427F 1:14
0 Pr0:93G

þ F 0PrG
2

� �
EG þ F 0

2

ðA:4Þ
with RE as before and EG ¼ cpGðT1�T iÞ
PrG Dhv

, gd(RE) from Eq. (3)
and u2(Pr) from Eq. (14). As we can see from Eq. (A.4)
heat conduction may be neglected, when the first term on
the right-hand side is much smaller than the last term. Then
Eq. (A.4) becomes identical with Eq. (5).

In the case of small suction rates, Y! 0, when heat
conduction is no more negligible we may proceed as fol-
lows: We first estimate the interface temperature Ti and
with this determine the values RE, PrG and EG. Keeping
in mind that gd in Eq. (A.4) depends on parameter RE

according to Eq. (3), we can then determine the suction
parameter F0 from Eq. (A.4). As follows from Eqs.
(A.3) and (4) the suction parameter should fulfill the
equation

u1ðScÞ
1

½1þ 0:427F 1:14
0 Sc0:93�F 0Sc=2

þ 1 ¼ 1

Y
. ðA:5Þ

If this equation is not fulfilled, the interface temperature
must be estimated once again until Eq. (A.5) is fulfilled.
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